

Abstracts

Modeling microwave and hybrid heating processes including heat radiation effects

J. Haala and W. Wiesbeck. "Modeling microwave and hybrid heating processes including heat radiation effects." 2002 Transactions on Microwave Theory and Techniques 50.5 (May 2002 [T-MTT]): 1346-1354.

This paper presents an efficient simulation tool for conventional, microwave, and combined heating. Two heat-transfer mechanisms are included: conductive and radiant heat transfer. The conductive heat transfer is modeled by a finite-difference algorithm. A modeling technique for radiant heat transfer in nonuniform grids has been developed and is here presented for the first time. For the radiant heat transfer a finite-difference scheme is not applicable, as radiation from a material surface; is not bounded to the immediate vicinity, as is conductive heat transfer. Therefore, ray optical methods are used. Rays connecting mutually visible surfaces are obtained by a new fast method. Necessary, but acceptable simplifications allow fast computations. The algorithms are integrated conveniently together with an electromagnetic finite-difference time-domain program to one simulation tool. Representative simulations are presented for an oven heated conventionally, by microwaves, and by a combination of both.

[Return to main document.](#)